Advertisements
Advertisements
प्रश्न
Simplify the following :
`(3sqrt(2))/(sqrt(6) - sqrt(3)) - (4sqrt(3))/(sqrt(6) - sqrt(2)) + (2sqrt(3))/(sqrt(6) + 2)`
उत्तर
`(3sqrt(2))/(sqrt(6) - sqrt(3)) - (4sqrt(3))/(sqrt(6) - sqrt(2)) + (2sqrt(3))/(sqrt(6) + 2)`
Rationalizing the denominator of each term, we have
= `(3sqrt(2)(sqrt(6) + sqrt(3)))/((sqrt(6) - sqrt(3))(sqrt(6) + sqrt(3))) - (4sqrt(3)(sqrt(6) + sqrt(2)))/((sqrt(6) - sqrt(2))(sqrt(6) + sqrt(2))) + (2sqrt(3)(sqrt(6) - 2))/((sqrt(6) + 2)(sqrt(6) - 2))`
= `(3sqrt(12) + 3sqrt(6))/(6 - 3) - (4sqrt(18) + 4sqrt(6))/(6 - 2) + (2sqrt(18) - 4sqrt(3))/(2)`
= `(3sqrt(12) + 3sqrt(6))/(3) - (4sqrt(18) + 4sqrt(6))/(4) + (2sqrt(18) - 4sqrt(3))/(2)`
= `sqrt(12) + sqrt(6) - sqrt(18) - sqrt(6) + sqrt(18) - 2sqrt(3)`
= `sqrt(12) - 2sqrt(3)`
= `2sqrt(3) - 2sqrt(3)`
= 0
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`1/(sqrt 7 + sqrt 2)`
Rationalize the denominator.
`1/(sqrt 3 - sqrt 2)`
Rationalise the denominators of : `[ sqrt3 - sqrt2 ]/[ sqrt3 + sqrt2 ]`
Simplify by rationalising the denominator in the following.
`(5)/(sqrt(7) - sqrt(2))`
Simplify by rationalising the denominator in the following.
`(3 - sqrt(3))/(2 + sqrt(2)`
Simplify by rationalising the denominator in the following.
`(5sqrt(3) - sqrt(15))/(5sqrt(3) + sqrt(15)`
Simplify by rationalising the denominator in the following.
`(7sqrt(3) - 5sqrt(2))/(sqrt(48) + sqrt(18)`
Simplify the following :
`sqrt(6)/(sqrt(2) + sqrt(3)) + (3sqrt(2))/(sqrt(6) + sqrt(3)) - (4sqrt(3))/(sqrt(6) + sqrt(2)`
In the following, find the values of a and b:
`(sqrt(11) - sqrt(7))/(sqrt(11) + sqrt(7)) = "a" - "b"sqrt(77)`
If x = `(7 + 4sqrt(3))`, find the value of
`x^2 + (1)/x^2`