Advertisements
Advertisements
प्रश्न
Simplify the following :
`sqrt(6)/(sqrt(2) + sqrt(3)) + (3sqrt(2))/(sqrt(6) + sqrt(3)) - (4sqrt(3))/(sqrt(6) + sqrt(2)`
उत्तर
`sqrt(6)/(sqrt(2) + sqrt(3)) + (3sqrt(2))/(sqrt(6) + sqrt(3)) - (4sqrt(3))/(sqrt(6) + sqrt(2)`
Rationalizing the denominator of each term, we have
= `(sqrt(6)(sqrt(2) - sqrt(3)))/((sqrt(2) + sqrt(3))(sqrt(2) - sqrt(3))) + (3sqrt(2)(sqrt(6) - sqrt(3)))/((sqrt(6) + sqrt(3))(sqrt(6) - sqrt(3))) - (4sqrt(3)(sqrt(6) - sqrt(2)))/((sqrt(6) + sqrt(2))(sqrt(6) - sqrt(2)))`
= `(sqrt(12) - sqrt(18))/(2 - 3) + (3sqrt(12) - 3sqrt(6))/(6 - 3) - (4sqrt(18) - 4sqrt(6))/(6 - 2)`
= `(sqrt(12) - sqrt(18))/(-1) + (3sqrt(12) - 3sqrt(6))/(3) - (4sqrt(18) - 4sqrt(6))/(4)`
= `sqrt(18) - sqrt(12) + sqrt(12) - sqrt(6) - sqrt(18) + sqrt(6)`
= 0
APPEARS IN
संबंधित प्रश्न
Simplify :
` 22/[2sqrt3 + 1] + 17/[ 2sqrt3 - 1]`
Simplify by rationalising the denominator in the following.
`(1)/(sqrt(3) + sqrt(2))`
Simplify by rationalising the denominator in the following.
`(5sqrt(3) - sqrt(15))/(5sqrt(3) + sqrt(15)`
Simplify the following
`(3)/(5 - sqrt(3)) + (2)/(5 + sqrt(3)`
If `(sqrt(2.5) - sqrt(0.75))/(sqrt(2.5) + sqrt(0.75)) = "p" + "q"sqrt(30)`, find the values of p and q.
In the following, find the values of a and b:
`(1)/(sqrt(5) - sqrt(3)) = "a"sqrt(5) - "b"sqrt(3)`
If x = `(7 + 4sqrt(3))`, find the value of
`sqrt(x) + (1)/(sqrt(x)`
If x = `(4 - sqrt(15))`, find the values of
`x^2 + (1)/x^2`
Evaluate, correct to one place of decimal, the expression `5/(sqrt20 - sqrt10)`, if `sqrt5` = 2.2 and `sqrt10` = 3.2.
Show that: `x^2 + 1/x^2 = 34,` if x = 3 + `2sqrt2`