Advertisements
Advertisements
प्रश्न
If x = `(7 + 4sqrt(3))`, find the value of
`sqrt(x) + (1)/(sqrt(x)`
उत्तर
`sqrt(x) + (1)/(sqrt(x)`
Squaring Both sides we get
`(sqrt(x) + (1)/sqrt(x))^2 = x + (1)/x + 2` ----(1)
We will first find out `x + (1)/x`
`x + (1)/x = (7 + 4sqrt(3)) + (1)/((7 + 4sqrt(3))`
= `((7 + 4sqrt(3)^2 + 1))/((7 + 4sqrt(3))`
= `(49 + 48 + 56sqrt(3) + 1)/((7 + 4sqrt(3))`
= `(98 + 56sqrt(3))/((7 + 4sqrt(3))`
= `(14(7 + 4sqrt(3)))/((7 + 4sqrt(3))`
= 14
substitutingin (1)
`(sqrt(x) + (1)/sqrt(x))^2 = x + (1)/x + 2`
= 14 + 2
= 16
∴ `sqrt(x) + (1)/sqrt(x)` = 4
APPEARS IN
संबंधित प्रश्न
Simplify by rationalising the denominator in the following.
`(sqrt(7) - sqrt(5))/(sqrt(7) + sqrt(5)`
Simplify by rationalising the denominator in the following.
`(2sqrt(3) - sqrt(6))/(2sqrt(3) + sqrt(6)`
Simplify by rationalising the denominator in the following.
`(5sqrt(3) - sqrt(15))/(5sqrt(3) + sqrt(15)`
Simplify by rationalising the denominator in the following.
`(7sqrt(3) - 5sqrt(2))/(sqrt(48) + sqrt(18)`
If `(sqrt(2.5) - sqrt(0.75))/(sqrt(2.5) + sqrt(0.75)) = "p" + "q"sqrt(30)`, find the values of p and q.
In the following, find the values of a and b.
`(sqrt(3) - 1)/(sqrt(3) + 1) = "a" + "b"sqrt(3)`
If x = `(7 + 4sqrt(3))`, find the values of
`x^3 + (1)/x^3`
If x = `(4 - sqrt(15))`, find the values of:
`(x + (1)/x)^2`
If x = `(1)/((3 - 2sqrt(2))` and y = `(1)/((3 + 2sqrt(2))`, find the values of
x2 + y2
If x = `sqrt3 - sqrt2`, find the value of:
(i) `x + 1/x`
(ii) `x^2 + 1/x^2`
(iii) `x^3 + 1/x^3`
(iv) `x^3 + 1/x^3 - 3(x^2 + 1/x^2) + x + 1/x`