Advertisements
Advertisements
प्रश्न
Simplify by rationalising the denominator in the following.
`(2sqrt(3) - sqrt(6))/(2sqrt(3) + sqrt(6)`
उत्तर
`(2sqrt(3) - sqrt(6))/(2sqrt(3) + sqrt(6)`
= `(2sqrt(3) - sqrt(6))/(2sqrt(3) + sqrt(6)) xx (2sqrt(3) - sqrt(6))/(2sqrt(3) - sqrt(6)`
= `((2sqrt(3) - sqrt(6))^2)/((2sqrt(3))^2 - (sqrt(6))^2`
= `(12 + 6 - 4sqrt(18))/(12 - 6)`
= `(18 - 4sqrt(18))/(6)`
= `(9 - 2sqrt(18))/(3)`
= `(9 - 6sqrt(2))/(3)`
= 3 - 2`sqrt(2)`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`4/(7+ 4 sqrt3)`
Rationalize the denominator.
`1/(sqrt 3 - sqrt 2)`
Rationalize the denominator.
`1/(3 sqrt 5 + 2 sqrt 2)`
Rationalise the denominators of : `[ sqrt3 - sqrt2 ]/[ sqrt3 + sqrt2 ]`
Simplify the following :
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2)`
In the following, find the values of a and b:
`(sqrt(11) - sqrt(7))/(sqrt(11) + sqrt(7)) = "a" - "b"sqrt(77)`
In the following, find the values of a and b:
`(7sqrt(3) - 5sqrt(2))/(4sqrt(3) + 3sqrt(2)) = "a" - "b"sqrt(6)`
In the following, find the value of a and b:
`(7 + sqrt(5))/(7 - sqrt(5)) - (7 - sqrt(5))/(7 + sqrt(5)) = "a" + "b"sqrt(5)`
If x = `(7 + 4sqrt(3))`, find the values of
`x^3 + (1)/x^3`
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) - 1)`, find the values of
x2 - y2 + xy