Advertisements
Advertisements
प्रश्न
Rationalize the denominator.
`1/(3 sqrt 5 + 2 sqrt 2)`
उत्तर
`1/(3 sqrt 5 + 2 sqrt 2)`
`= 1/((3 sqrt 5 + 2 sqrt 2)) xx ((3 sqrt 5 - 2 sqrt 2))/((3 sqrt 5 - 2 sqrt 2))`
` = ((3 sqrt 5 - 2 sqrt 2))/((3sqrt5)^2 - (2sqrt 2)^2)
...[(a+b)(a-b) = a^2 - b^2]`
`= ((3 sqrt5 - 2 sqrt 2))/(45-8)`
`= (3 sqrt5 - 2 sqrt 2)/37`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`3/(2 sqrt 5 - 3 sqrt 2)`
Rationalise the denominators of : `[ 2 - √3 ]/[ 2 + √3 ]`
Simplify :
` 22/[2sqrt3 + 1] + 17/[ 2sqrt3 - 1]`
Simplify by rationalising the denominator in the following.
`(5 + sqrt(6))/(5 - sqrt(6)`
Simplify by rationalising the denominator in the following.
`(5sqrt(3) - sqrt(15))/(5sqrt(3) + sqrt(15)`
Simplify the following
`(sqrt(5) - 2)/(sqrt(5) + 2) - (sqrt(5) + 2)/(sqrt(5) - 2)`
In the following, find the value of a and b:
`(sqrt(3) - 1)/(sqrt(3) + 1) + (sqrt(3) + 1)/(sqrt(3) - 1) = "a" + "b"sqrt(3)`
If x = `(4 - sqrt(15))`, find the values of
`x^2 + (1)/x^2`
If x = `(1)/((3 - 2sqrt(2))` and y = `(1)/((3 + 2sqrt(2))`, find the values of
x3 + y3
If x = `sqrt3 - sqrt2`, find the value of:
(i) `x + 1/x`
(ii) `x^2 + 1/x^2`
(iii) `x^3 + 1/x^3`
(iv) `x^3 + 1/x^3 - 3(x^2 + 1/x^2) + x + 1/x`