Advertisements
Advertisements
प्रश्न
Rationalize the denominator.
`12/(4sqrt3 - sqrt 2)`
उत्तर
`12/(4sqrt3 - sqrt 2)`
`= 12/(4sqrt3 - sqrt 2) xx (4sqrt3 + sqrt 2)/(4sqrt3 + sqrt 2)`
`= (12 (4sqrt3 + sqrt 2))/((4sqrt3)^2 -(sqrt 2)^2) ...[(a+b)(a-b) = a^2 - b^2]`
`=(12 (4sqrt3 + sqrt 2))/(48 - 2)`
`= (12 (4sqrt3 + sqrt 2))/46`
`= (6 (4sqrt3 + sqrt 2))/23`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`1/(sqrt 3 - sqrt 2)`
Rationalise the denominators of : `3/sqrt5`
Simplify : `sqrt18/[ 5sqrt18 + 3sqrt72 - 2sqrt162]`
Simplify by rationalising the denominator in the following.
`(1)/(sqrt(3) + sqrt(2))`
Simplify by rationalising the denominator in the following.
`(42)/(2sqrt(3) + 3sqrt(2)`
If x = `(4 - sqrt(15))`, find the values of
`(1)/x`
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) - 1)`, find the values of
x2 - y2 + xy
Simplify:
`(sqrt(x^2 + y^2) - y)/(x - sqrt(x^2 - y^2)) ÷ (sqrt(x^2 - y^2) + x)/(sqrt(x^2 + y^2) + y)`
Draw a line segment of length `sqrt3` cm.
Show that: `x^3 + 1/x^3 = 52`, if x = 2 + `sqrt3`