Advertisements
Advertisements
Question
Rationalize the denominator.
`12/(4sqrt3 - sqrt 2)`
Solution
`12/(4sqrt3 - sqrt 2)`
`= 12/(4sqrt3 - sqrt 2) xx (4sqrt3 + sqrt 2)/(4sqrt3 + sqrt 2)`
`= (12 (4sqrt3 + sqrt 2))/((4sqrt3)^2 -(sqrt 2)^2) ...[(a+b)(a-b) = a^2 - b^2]`
`=(12 (4sqrt3 + sqrt 2))/(48 - 2)`
`= (12 (4sqrt3 + sqrt 2))/46`
`= (6 (4sqrt3 + sqrt 2))/23`
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`1/sqrt5`
If `sqrt2` = 1.4 and `sqrt3` = 1.7, find the value of `(2 - sqrt3)/(sqrt3).`
Simplify by rationalising the denominator in the following.
`(sqrt(15) + 3)/(sqrt(15) - 3)`
Simplify the following :
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2)`
If `(sqrt(2.5) - sqrt(0.75))/(sqrt(2.5) + sqrt(0.75)) = "p" + "q"sqrt(30)`, find the values of p and q.
In the following, find the values of a and b.
`(sqrt(3) - 1)/(sqrt(3) + 1) = "a" + "b"sqrt(3)`
In the following, find the value of a and b:
`(7 + sqrt(5))/(7 - sqrt(5)) - (7 - sqrt(5))/(7 + sqrt(5)) = "a" + "b"sqrt(5)`
If x = `(4 - sqrt(15))`, find the values of
`x^3 + (1)/x^3`
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) + 1)`, find the values of
x2 + y2
Show that: `(4 - sqrt5)/(4 + sqrt5) + 2/(5 + sqrt3) + (4 + sqrt5)/(4 - sqrt5) + 2/(5 - sqrt3) = 52/11`