Advertisements
Advertisements
Question
Simplify by rationalising the denominator in the following.
`(sqrt(15) + 3)/(sqrt(15) - 3)`
Solution
`(sqrt(15) + 3)/(sqrt(15) - 3)`
= `(sqrt(15) + 3)/(sqrt(15) - 3) xx (sqrt(15) + 3)/(sqrt(15) + 3)`
= `(sqrt(15) + 3)^2/((sqrt(15))^2 - (3)^2`
= `(15 + 9 + 6sqrt(15))/(15 - 9)`
= `(24 + 6sqrt(15))/(6)`
= 4 + `sqrt(15)`
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`4/(7+ 4 sqrt3)`
Rationalize the denominator.
`(sqrt 5 - sqrt 3)/(sqrt 5 + sqrt 3)`
Rationalise the denominators of : `[ 2√5 + 3√2 ]/[ 2√5 - 3√2 ]`
Rationalise the denominator of `1/[ √3 - √2 + 1]`
Simplify by rationalising the denominator in the following.
`(3sqrt(2))/sqrt(5)`
Simplify by rationalising the denominator in the following.
`(3sqrt(5) + sqrt(7))/(3sqrt(5) - sqrt(7)`
Simplify by rationalising the denominator in the following.
`(7sqrt(3) - 5sqrt(2))/(sqrt(48) + sqrt(18)`
Simplify the following :
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2)`
If x = `(4 - sqrt(15))`, find the values of
`x + (1)/x`
If x = `(1)/((3 - 2sqrt(2))` and y = `(1)/((3 + 2sqrt(2))`, find the values of
x3 + y3