Advertisements
Advertisements
Question
Simplify by rationalising the denominator in the following.
`(sqrt(7) - sqrt(5))/(sqrt(7) + sqrt(5)`
Solution
`(sqrt(7) - sqrt(5))/(sqrt(7) + sqrt(5)`
= `(sqrt(7) - sqrt(5))/(sqrt(7) + sqrt(5)) xx (sqrt(7) - sqrt(5))/(sqrt(7) - sqrt(5)`
= `(sqrt(7) - sqrt(5))^2/((sqrt(7))^2 - (sqrt(5))^2`
= `(7 + 5 - 2sqrt(35))/(7 - 5)`
= `(12 - 2sqrt(35))/(2)`
= 6 - `sqrt(35)`
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`1/(3 sqrt 5 + 2 sqrt 2)`
Rationalise the denominators of : `1/(sqrt3 - sqrt2 )`
Simplify by rationalising the denominator in the following.
`(42)/(2sqrt(3) + 3sqrt(2)`
Simplify by rationalising the denominator in the following.
`(sqrt(3) + 1)/(sqrt(3) - 1)`
Simplify by rationalising the denominator in the following.
`(4 + sqrt(8))/(4 - sqrt(8)`
Simplify the following :
`(6)/(2sqrt(3) - sqrt(6)) + sqrt(6)/(sqrt(3) + sqrt(2)) - (4sqrt(3))/(sqrt(6) - sqrt(2)`
If `(sqrt(2.5) - sqrt(0.75))/(sqrt(2.5) + sqrt(0.75)) = "p" + "q"sqrt(30)`, find the values of p and q.
In the following, find the values of a and b:
`(sqrt(3) - 2)/(sqrt(3) + 2) = "a"sqrt(3) + "b"`
In the following, find the values of a and b:
`(sqrt(11) - sqrt(7))/(sqrt(11) + sqrt(7)) = "a" - "b"sqrt(77)`
Show that Negative of an irrational number is irrational.