Advertisements
Advertisements
Question
In the following, find the values of a and b:
`(sqrt(3) - 2)/(sqrt(3) + 2) = "a"sqrt(3) + "b"`
Solution
`(sqrt(3) - 2)/(sqrt(3) + 2)`
= `(sqrt(3) - 2)/(sqrt(3) + 2) xx (sqrt(3) - 2)/(sqrt(3 - 2)`
= `(sqrt(3)(sqrt(3) - 2) - 2(sqrt(3) - 2))/((sqrt(3))^2 - (sqrt(2))^2`
= `(3 - 2sqrt(3) - 2sqrt(3) + 4)/(3 - 4)`
= `(7 - 4sqrt(3))/(-1)`
= `-(7 - 4sqrt(3))`
= `-7 + 4sqrt(3)`
= `4sqrt(3) - 7`
= `4sqrt(3) + (-7)`
= `"a"sqrt(3) + "b"`
Hence, a = 4 and b = -7.
APPEARS IN
RELATED QUESTIONS
Simplify :
` 22/[2sqrt3 + 1] + 17/[ 2sqrt3 - 1]`
Simplify by rationalising the denominator in the following.
`(2)/(3 + sqrt(7)`
Simplify by rationalising the denominator in the following.
`(5)/(sqrt(7) - sqrt(2))`
Simplify by rationalising the denominator in the following.
`(4 + sqrt(8))/(4 - sqrt(8)`
Simplify by rationalising the denominator in the following.
`(3sqrt(5) + sqrt(7))/(3sqrt(5) - sqrt(7)`
Simplify by rationalising the denominator in the following.
`(5sqrt(3) - sqrt(15))/(5sqrt(3) + sqrt(15)`
If x = `(4 - sqrt(15))`, find the values of
`x^3 + (1)/x^3`
Show that Negative of an irrational number is irrational.
Draw a line segment of length `sqrt8` cm.
Show that: `x^2 + 1/x^2 = 34,` if x = 3 + `2sqrt2`