Advertisements
Advertisements
Question
Simplify by rationalising the denominator in the following.
`(5)/(sqrt(7) - sqrt(2))`
Solution
`(5)/(sqrt(7) - sqrt(2))`
= `(5)/(sqrt(7) - sqrt(2)) xx (sqrt(7) + sqrt(2))/(sqrt(7) + sqrt(2)`
= `(5(sqrt(7) + sqrt(2)))/((sqrt(7))^2 + (sqrt(2))^2)`
= `(5(sqrt(7) + sqrt(2)))/(7 - 2)`
= `(5(sqrt(7) + sqrt(2)))/(5)`
= `sqrt(7) + sqrt(2)`
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`1/(sqrt 7 + sqrt 2)`
Rationalize the denominator.
`(sqrt 5 - sqrt 3)/(sqrt 5 + sqrt 3)`
If `sqrt2` = 1.4 and `sqrt3` = 1.7, find the value of `(2 - sqrt3)/(sqrt3).`
Simplify by rationalising the denominator in the following.
`(sqrt(3) + 1)/(sqrt(3) - 1)`
Simplify by rationalising the denominator in the following.
`(7sqrt(3) - 5sqrt(2))/(sqrt(48) + sqrt(18)`
Simplify the following
`(sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3)) + (sqrt(5) - sqrt(3))/(sqrt(5) + sqrt(3)`
Simplify the following :
`sqrt(6)/(sqrt(2) + sqrt(3)) + (3sqrt(2))/(sqrt(6) + sqrt(3)) - (4sqrt(3))/(sqrt(6) + sqrt(2)`
Simplify the following :
`(6)/(2sqrt(3) - sqrt(6)) + sqrt(6)/(sqrt(3) + sqrt(2)) - (4sqrt(3))/(sqrt(6) - sqrt(2)`
If x = `(1)/((3 - 2sqrt(2))` and y = `(1)/((3 + 2sqrt(2))`, find the values of
x3 + y3
Draw a line segment of length `sqrt3` cm.