Advertisements
Advertisements
Question
Simplify by rationalising the denominator in the following.
`(7sqrt(3) - 5sqrt(2))/(sqrt(48) + sqrt(18)`
Solution
`(7sqrt(3) - 5sqrt(2))/(sqrt(48) + sqrt(18)`
= `(7sqrt(3) - 5sqrt(2))/(sqrt(48) + sqrt(18)) xx (sqrt(48) - sqrt(18))/(sqrt(48) - sqrt(18)`
= `(7sqrt(144) - 7sqrt(54) - 5sqrt(96) + 5sqrt(36))/((sqrt(48))^2 - (sqrt(18))^2`
= `(84 - 21sqrt(6) - 20sqrt(6) + 30)/(48 - 18)`
= `(144 - 41sqrt(6))/(30)`
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`3/(2 sqrt 5 - 3 sqrt 2)`
Rationalize the denominator.
`1/(3 sqrt 5 + 2 sqrt 2)`
Rationalize the denominator.
`12/(4sqrt3 - sqrt 2)`
Rationalise the denominators of : `1/(sqrt3 - sqrt2 )`
Simplify by rationalising the denominator in the following.
`(sqrt(7) - sqrt(5))/(sqrt(7) + sqrt(5)`
Simplify by rationalising the denominator in the following.
`(2sqrt(6) - sqrt(5))/(3sqrt(5) - 2sqrt(6)`
Simplify the following
`(sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3)) + (sqrt(5) - sqrt(3))/(sqrt(5) + sqrt(3)`
In the following, find the values of a and b:
`(3 + sqrt(7))/(3 - sqrt(7)) = "a" + "b"sqrt(7)`
If x = `(7 + 4sqrt(3))`, find the value of
`sqrt(x) + (1)/(sqrt(x)`
If x = `(7 + 4sqrt(3))`, find the values of :
`(x + (1)/x)^2`