Advertisements
Advertisements
Question
If x = `(7 + 4sqrt(3))`, find the values of :
`(x + (1)/x)^2`
Solution
x = `7 + 4sqrt(3)`
∴ `(1)/x = (1)/(7 + 4sqrt(3))`
= `(1)/(7 + 4sqrt(3)) xx (7 - 4sqrt(3))/(7 - 4sqrt(3))`
= `(7 - 4sqrt(3))/(7^2 - (4sqrt(3))^2`
= `(7 - 4sqrt(3))/(49 - 48)`
= `(7 - 4sqrt(3))/(1)`
= `7 - 4sqrt(3)`
∴ `x + (1)/x `
= `(7 + 4sqrt(3)) + (7 - 4sqrt(3))`
= `7 + 4sqrt(3) + 7 - 4sqrt(3)`
= 14
Hence, `(x + (1)/x)^2`
= (14)2
= 196
APPEARS IN
RELATED QUESTIONS
Rationalise the denominators of : `3/[ sqrt5 + sqrt2 ]`
Simplify by rationalising the denominator in the following.
`(3sqrt(2))/sqrt(5)`
Simplify by rationalising the denominator in the following.
`(42)/(2sqrt(3) + 3sqrt(2)`
Simplify by rationalising the denominator in the following.
`(5 + sqrt(6))/(5 - sqrt(6)`
Simplify by rationalising the denominator in the following.
`(sqrt(15) + 3)/(sqrt(15) - 3)`
Simplify by rationalising the denominator in the following.
`(3sqrt(5) + sqrt(7))/(3sqrt(5) - sqrt(7)`
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) - 1)`, find the values of
x2 - y2 + xy
Evaluate, correct to one place of decimal, the expression `5/(sqrt20 - sqrt10)`, if `sqrt5` = 2.2 and `sqrt10` = 3.2.
If x = `sqrt3 - sqrt2`, find the value of:
(i) `x + 1/x`
(ii) `x^2 + 1/x^2`
(iii) `x^3 + 1/x^3`
(iv) `x^3 + 1/x^3 - 3(x^2 + 1/x^2) + x + 1/x`
Show that: `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + (2 sqrt3)/(sqrt3 - sqrt2) = 11`