English

If X = ( 7 + 4 √ 3 ) , Find the Values of : ( X + 1 X ) 2 - Mathematics

Advertisements
Advertisements

Question

If x = `(7 + 4sqrt(3))`, find the values of :

`(x + (1)/x)^2`

Sum

Solution

x = `7 + 4sqrt(3)`

∴ `(1)/x = (1)/(7 + 4sqrt(3))`

= `(1)/(7 + 4sqrt(3)) xx (7 - 4sqrt(3))/(7 - 4sqrt(3))`

= `(7 - 4sqrt(3))/(7^2 - (4sqrt(3))^2`

= `(7 - 4sqrt(3))/(49 - 48)`

= `(7 - 4sqrt(3))/(1)`

= `7 - 4sqrt(3)`

∴ `x + (1)/x `

= `(7 + 4sqrt(3)) + (7 - 4sqrt(3))`

= `7 + 4sqrt(3) + 7 - 4sqrt(3)`

= 14

Hence, `(x + (1)/x)^2`
= (14)2
= 196

shaalaa.com
Simplifying an Expression by Rationalization of the Denominator
  Is there an error in this question or solution?
Chapter 1: Irrational Numbers - Exercise 1.3

APPEARS IN

Frank Mathematics [English] Class 9 ICSE
Chapter 1 Irrational Numbers
Exercise 1.3 | Q 7.4
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×