Advertisements
Advertisements
Question
Rationalise the denominators of : `3/[ sqrt5 + sqrt2 ]`
Solution
`3/[ sqrt5 + sqrt2 ] xx ((sqrt5 - sqrt2)/(sqrt5 - sqrt2))`
= `[3 (sqrt5 - sqrt2)]/[ (sqrt5)^2 - (sqrt2)^2 ]`
= `[3 (sqrt5 - sqrt2)]/[ 5 - 2]`
= `sqrt5 - sqrt2`
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`1/sqrt5`
Rationalize the denominator.
`2/(3 sqrt 7)`
Rationalise the denominators of : `3/sqrt5`
Simplify by rationalising the denominator in the following.
`(sqrt(15) + 3)/(sqrt(15) - 3)`
Simplify by rationalising the denominator in the following.
`(sqrt(7) - sqrt(5))/(sqrt(7) + sqrt(5)`
If `(sqrt(2.5) - sqrt(0.75))/(sqrt(2.5) + sqrt(0.75)) = "p" + "q"sqrt(30)`, find the values of p and q.
In the following, find the values of a and b:
`(sqrt(11) - sqrt(7))/(sqrt(11) + sqrt(7)) = "a" - "b"sqrt(77)`
In the following, find the values of a and b:
`(sqrt(2) + sqrt(3))/(3sqrt(2) - 2sqrt(3)) = "a" - "b"sqrt(6)`
If x = `(4 - sqrt(15))`, find the values of
`x^3 + (1)/x^3`
If x = `(1)/((3 - 2sqrt(2))` and y = `(1)/((3 + 2sqrt(2))`, find the values of
x3 + y3