Advertisements
Advertisements
Question
If x = `(4 - sqrt(15))`, find the values of
`x^3 + (1)/x^3`
Solution
`x^3 + (1)/x^3`
`(x^3 + (1)/x^3) = (x + (1)/x)^3 -3(x + (1)/x)` -----(1)
we will first find the value of `x + (1)/x`
`x + (1)/x = (4 - sqrt(15)) + (1)/((4 - sqrt(15))`
= `((4 - sqrt(15))^2 + 1)/((4 - sqrt(15))`
= `(16 + 15 - 8sqrt(15) + 1)/((4 - sqrt(15))`
= `(8(4 - sqrt(15)))/((4 - sqrt(15))`
= 8
substituting the valuesin (1)
`(x^3 + (1)/x^3) = (x + (1)/x)^3 -3(x + (1)/x)`
= 83 - 24
= 488
`(x^3 + (1)/x^3)` = 488
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`1/sqrt5`
Rationalize the denominator.
`1/(sqrt 3 - sqrt 2)`
Rationalise the denominators of : `3/sqrt5`
Simplify :
` 22/[2sqrt3 + 1] + 17/[ 2sqrt3 - 1]`
Simplify by rationalising the denominator in the following.
`(1)/(sqrt(3) + sqrt(2))`
If `(sqrt(2.5) - sqrt(0.75))/(sqrt(2.5) + sqrt(0.75)) = "p" + "q"sqrt(30)`, find the values of p and q.
In the following, find the values of a and b:
`(sqrt(2) + sqrt(3))/(3sqrt(2) - 2sqrt(3)) = "a" - "b"sqrt(6)`
If x = `(4 - sqrt(15))`, find the values of
`x + (1)/x`
Show that: `x^2 + 1/x^2 = 34,` if x = 3 + `2sqrt2`
Show that: `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + (2 sqrt3)/(sqrt3 - sqrt2) = 11`