Advertisements
Advertisements
Question
Simplify :
` 22/[2sqrt3 + 1] + 17/[ 2sqrt3 - 1]`
Solution
` 22/[2sqrt3 + 1] + 17/[ 2sqrt3 - 1]`
= `[ 22(2sqrt3 - 1) + 17(2sqrt3 + 1)]/[(2sqrt3 + 1)( 2sqrt3 -1 )]`
= `[ 44sqrt3 - 22 + 34sqrt3 + 17]/[ (2sqrt3)^2 - 1 ]`
=`[ 78sqrt3 - 5]/[ 12 - 1]`
= `[ 78sqrt3 - 5 ]/11`
APPEARS IN
RELATED QUESTIONS
Simplify by rationalising the denominator in the following.
`(2sqrt(3) - sqrt(6))/(2sqrt(3) + sqrt(6)`
Simplify by rationalising the denominator in the following.
`(2sqrt(6) - sqrt(5))/(3sqrt(5) - 2sqrt(6)`
Simplify the following
`(sqrt(5) - 2)/(sqrt(5) + 2) - (sqrt(5) + 2)/(sqrt(5) - 2)`
Simplify the following :
`(3sqrt(2))/(sqrt(6) - sqrt(3)) - (4sqrt(3))/(sqrt(6) - sqrt(2)) + (2sqrt(3))/(sqrt(6) + 2)`
Simplify the following :
`(6)/(2sqrt(3) - sqrt(6)) + sqrt(6)/(sqrt(3) + sqrt(2)) - (4sqrt(3))/(sqrt(6) - sqrt(2)`
Simplify the following :
`(4sqrt(3))/((2 - sqrt(2))) - (30)/((4sqrt(3) - 3sqrt(2))) - (3sqrt(2))/((3 + 2sqrt(3))`
In the following, find the values of a and b:
`(3 + sqrt(7))/(3 - sqrt(7)) = "a" + "b"sqrt(7)`
In the following, find the values of a and b:
`(sqrt(3) - 2)/(sqrt(3) + 2) = "a"sqrt(3) + "b"`
In the following, find the values of a and b:
`(sqrt(11) - sqrt(7))/(sqrt(11) + sqrt(7)) = "a" - "b"sqrt(77)`
Evaluate, correct to one place of decimal, the expression `5/(sqrt20 - sqrt10)`, if `sqrt5` = 2.2 and `sqrt10` = 3.2.