Advertisements
Advertisements
Question
Simplify the following :
`(4sqrt(3))/((2 - sqrt(2))) - (30)/((4sqrt(3) - 3sqrt(2))) - (3sqrt(2))/((3 + 2sqrt(3))`
Solution
`(4sqrt(3))/((2 - sqrt(2))) - (30)/((4sqrt(3) - 3sqrt(2))) - (3sqrt(2))/((3 + 2sqrt(3))`
Rationalizing the denominator of each term, we have
= `(4sqrt(3)(2 + sqrt(2)))/((2 - sqrt(2))(2 + sqrt(2))) - (30(4sqrt(3) + 3sqrt(2)))/((4sqrt(3) - 3sqrt(2))(4sqrt(3) + 3sqrt(2))) - (3sqrt(2)(3 - 2sqrt(3)))/((3 + 2sqrt(3))(3 - 2sqrt(3))`
= `(8sqrt(3) + 4sqrt(6))/(4 - 2) - (120sqrt(3) + 90sqrt(2))/(48 - 18) - (9sqrt(2) - 6sqrt(6))/(9 - 12)`
= `(8sqrt(3) + 4sqrt(6))/(2) - (120sqrt(3) + 90sqrt(2))/(30) - (9sqrt(2) - 6sqrt(6))/(-3)`
= `(8sqrt(3) + 4sqrt(6))/(2) - (120sqrt(3) + 90sqrt(2))/(30) - (9sqrt(2) - 6sqrt(6))/(3)`
= `4sqrt(3) + 2sqrt(6) - 4sqrt(3) - 3sqrt(2) + 3sqrt(2) - 2sqrt(6)`
= 0
APPEARS IN
RELATED QUESTIONS
Rationalise the denominators of : `1/(sqrt3 - sqrt2 )`
Rationalise the denominators of : `[sqrt6 - sqrt5]/[sqrt6 + sqrt5]`
Simplify:
`sqrt2/[sqrt6 - sqrt2] - sqrt3/[sqrt6 + sqrt2]`
Rationalise the denominator of `1/[ √3 - √2 + 1]`
Simplify by rationalising the denominator in the following.
`(7sqrt(3) - 5sqrt(2))/(sqrt(48) + sqrt(18)`
Simplify the following :
`sqrt(6)/(sqrt(2) + sqrt(3)) + (3sqrt(2))/(sqrt(6) + sqrt(3)) - (4sqrt(3))/(sqrt(6) + sqrt(2)`
Simplify the following :
`(3sqrt(2))/(sqrt(6) - sqrt(3)) - (4sqrt(3))/(sqrt(6) - sqrt(2)) + (2sqrt(3))/(sqrt(6) + 2)`
If x = `(4 - sqrt(15))`, find the values of
`x + (1)/x`
Draw a line segment of length `sqrt8` cm.
Show that: `(4 - sqrt5)/(4 + sqrt5) + 2/(5 + sqrt3) + (4 + sqrt5)/(4 - sqrt5) + 2/(5 - sqrt3) = 52/11`