Advertisements
Advertisements
Question
Rationalise the denominators of : `[sqrt6 - sqrt5]/[sqrt6 + sqrt5]`
Solution
`[sqrt6 - sqrt5]/[sqrt6 + sqrt5] xx [sqrt6 - sqrt5]/[sqrt6 - sqrt5]`
= `[ 6 + 5 - 2√30 ]/[ (√6)^2 - (√5)^2]`
= `[ 11 - 2√30 ]/[ 6 - 5 ]`
= 11 - 2√30
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`1/sqrt5`
Rationalise the denominators of : `(2sqrt3)/sqrt5`
Rationalise the denominators of : `[ 2 - √3 ]/[ 2 + √3 ]`
Rationalise the denominators of : `[ 2√5 + 3√2 ]/[ 2√5 - 3√2 ]`
Simplify by rationalising the denominator in the following.
`(3 - sqrt(3))/(2 + sqrt(2)`
If x = `(4 - sqrt(15))`, find the values of
`x + (1)/x`
If x = `(4 - sqrt(15))`, find the values of
`x^3 + (1)/x^3`
Simplify:
`(sqrt(x^2 + y^2) - y)/(x - sqrt(x^2 - y^2)) ÷ (sqrt(x^2 - y^2) + x)/(sqrt(x^2 + y^2) + y)`
Evaluate, correct to one place of decimal, the expression `5/(sqrt20 - sqrt10)`, if `sqrt5` = 2.2 and `sqrt10` = 3.2.
Draw a line segment of length `sqrt8` cm.