Advertisements
Advertisements
Question
Evaluate, correct to one place of decimal, the expression `5/(sqrt20 - sqrt10)`, if `sqrt5` = 2.2 and `sqrt10` = 3.2.
Solution
Given - `sqrt5` = 2.2 and `sqrt10` = 3.2.
`5/(sqrt20 - sqrt10)`
`= 5/(sqrt20 - sqrt10) xx (sqrt20 + sqrt10)/(sqrt20 + sqrt10)`
`= (5 (sqrt(20) + sqrt10))/(20 - 10)`
`= (cancel(5)^1 (sqrt(20) + sqrt10))/(cancel(10)_2)`
`= (sqrt(20) + sqrt10)/2`
`= (sqrt(4 xx 5) + sqrt10)/2`
`= (2sqrt5 + sqrt10)/2`
`= (2(2.2) + 3.2)/2`
`= (4.4 + 3.2)/2`
`= 7.6/2`
= 3.8
APPEARS IN
RELATED QUESTIONS
Rationalise the denominators of : `(2sqrt3)/sqrt5`
If `sqrt2` = 1.4 and `sqrt3` = 1.7, find the value of `(2 - sqrt3)/(sqrt3).`
Simplify by rationalising the denominator in the following.
`(42)/(2sqrt(3) + 3sqrt(2)`
Simplify by rationalising the denominator in the following.
`(sqrt(3) + 1)/(sqrt(3) - 1)`
Simplify by rationalising the denominator in the following.
`(2sqrt(6) - sqrt(5))/(3sqrt(5) - 2sqrt(6)`
Simplify the following :
`(4sqrt(3))/((2 - sqrt(2))) - (30)/((4sqrt(3) - 3sqrt(2))) - (3sqrt(2))/((3 + 2sqrt(3))`
In the following, find the values of a and b:
`(5 + 2sqrt(3))/(7 + 4sqrt(3)) = "a" + "b"sqrt(3)`
In the following, find the values of a and b:
`(7sqrt(3) - 5sqrt(2))/(4sqrt(3) + 3sqrt(2)) = "a" - "b"sqrt(6)`
In the following, find the values of a and b:
`(sqrt(2) + sqrt(3))/(3sqrt(2) - 2sqrt(3)) = "a" - "b"sqrt(6)`
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) + 1)`, find the values of
x3 + y3