Advertisements
Advertisements
Question
In the following, find the values of a and b:
`(sqrt(2) + sqrt(3))/(3sqrt(2) - 2sqrt(3)) = "a" - "b"sqrt(6)`
Solution
`(sqrt(2) + sqrt(3))/(3sqrt(2) - 2sqrt(3)`
= `(sqrt(2) + sqrt(3))/(3sqrt(2) - 2sqrt(3)) xx (3sqrt(2) + 2sqrt(3))/(3sqrt(2) + 2sqrt(3)`
= `((sqrt(2) + sqrt(3))(3sqrt(2) + 2sqrt(3)))/((3sqrt(2))^2 - (2sqrt(3))^2`
= `(sqrt(2)(3sqrt(2) + 2sqrt(3)) + sqrt(3)(3sqrt(2) + 2sqrt(3)))/((9 xx 2) - (4 xx 3))`
= `((3 xx 2 + 2sqrt(6)) + (3sqrt(6) + 2 xx 3))/(18 - 12)`
= `(6 + 2sqrt(6) + 3sqrt(6) + 6)/(6)`
= `(12 + 5sqrt(6))/(6)`
= `2 - (-5/6)sqrt(6)`
= `"a" - "b"sqrt(6)`
Hence, a = 2 and b = `-(5)/(6)`.
APPEARS IN
RELATED QUESTIONS
Rationalise the denominators of : `3/sqrt5`
Rationalise the denominators of : `3/[ sqrt5 + sqrt2 ]`
Simplify by rationalising the denominator in the following.
`(3 - sqrt(3))/(2 + sqrt(2)`
Simplify by rationalising the denominator in the following.
`(7sqrt(3) - 5sqrt(2))/(sqrt(48) + sqrt(18)`
In the following, find the values of a and b:
`(sqrt(3) - 2)/(sqrt(3) + 2) = "a"sqrt(3) + "b"`
If x = `(7 + 4sqrt(3))`, find the value of
`x^2 + (1)/x^2`
If x = `(7 + 4sqrt(3))`, find the values of :
`(x + (1)/x)^2`
If x = `((2 + sqrt(5)))/((2 - sqrt(5))` and y = `((2 - sqrt(5)))/((2 + sqrt(5))`, show that (x2 - y2) = `144sqrt(5)`.
Draw a line segment of length `sqrt3` cm.
Show that: `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + (2 sqrt3)/(sqrt3 - sqrt2) = 11`