Advertisements
Advertisements
Question
Show that: `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + (2 sqrt3)/(sqrt3 - sqrt2) = 11`
Solution
`(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + (2 sqrt3)/(sqrt3 - sqrt2)`
`=> (3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) xx (3sqrt2 - 2sqrt3)/(3sqrt2 - 2sqrt3) + (2sqrt3)/(sqrt3 - sqrt2) xx (sqrt3 + sqrt2)/(sqrt3 + sqrt2)`
`=> ((3sqrt2 - 2sqrt3)^2)/((3sqrt2)^2 - (2sqrt3)^2) + (2sqrt3 (sqrt3 + sqrt2))/((sqrt3)^2 - (sqrt2)^2)`
`=> ((3sqrt2)^2 + (2sqrt3)^2 - 2 xx 3sqrt2 xx 2sqrt3)/((9 xx 2) - (4 xx 3)) + (6 + 2sqrt6)/(3 - 2)`
`=> (18 + 12 - 12sqrt6)/(18 - 12) + 6 + 2sqrt6`
`=> (30 - 12sqrt6)/6 + 6 + 2sqrt6`
`=> (cancel(6) (5 - 2sqrt6))/cancel(6) + 6 + 2sqrt6`
`=> 5 - cancel(2sqrt6) + 6 + cancel(2sqrt6)`
= 5 + 6
= 11
APPEARS IN
RELATED QUESTIONS
Rationalise the denominators of : `[ √3 + 1 ]/[ √3 - 1 ]`
Rationalise the denominators of : `[ 2√5 + 3√2 ]/[ 2√5 - 3√2 ]`
Rationalise the denominator of `1/[ √3 - √2 + 1]`
Simplify : `sqrt18/[ 5sqrt18 + 3sqrt72 - 2sqrt162]`
Simplify by rationalising the denominator in the following.
`(sqrt(5) - sqrt(7))/sqrt(3)`
Simplify the following
`(3)/(5 - sqrt(3)) + (2)/(5 + sqrt(3)`
If `(sqrt(2.5) - sqrt(0.75))/(sqrt(2.5) + sqrt(0.75)) = "p" + "q"sqrt(30)`, find the values of p and q.
In the following, find the values of a and b:
`(sqrt(11) - sqrt(7))/(sqrt(11) + sqrt(7)) = "a" - "b"sqrt(77)`
If x = `(4 - sqrt(15))`, find the values of
`x + (1)/x`
Show that Negative of an irrational number is irrational.