Advertisements
Advertisements
Question
Simplify by rationalising the denominator in the following.
`(sqrt(5) - sqrt(7))/sqrt(3)`
Solution
`(sqrt(5) - sqrt(7))/sqrt(3)`
= `(sqrt(5) - sqrt(7))/sqrt(3) xx sqrt(3)/sqrt(3)`
= `(sqrt(5) xx sqrt(3) - sqrt(7) xx sqrt(3))/(sqrt(3))^2`
= `(sqrt(15) - sqrt(21))/(3)`
APPEARS IN
RELATED QUESTIONS
Rationalise the denominators of : `(2sqrt3)/sqrt5`
Simplify by rationalising the denominator in the following.
`(2sqrt(3) - sqrt(6))/(2sqrt(3) + sqrt(6)`
Simplify the following
`(4 + sqrt(5))/(4 - sqrt(5)) + (4 - sqrt(5))/(4 + sqrt(5)`
Simplify the following
`(sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3)) + (sqrt(5) - sqrt(3))/(sqrt(5) + sqrt(3)`
In the following, find the values of a and b.
`(sqrt(3) - 1)/(sqrt(3) + 1) = "a" + "b"sqrt(3)`
If x = `(7 + 4sqrt(3))`, find the value of
`x^2 + (1)/x^2`
If x = `(7 + 4sqrt(3))`, find the values of :
`(x + (1)/x)^2`
If x = `(4 - sqrt(15))`, find the values of
`x^2 + (1)/x^2`
If x = `(1)/((3 - 2sqrt(2))` and y = `(1)/((3 + 2sqrt(2))`, find the values of
x2 + y2
Draw a line segment of length `sqrt5` cm.