Advertisements
Advertisements
Question
If x = `(4 - sqrt(15))`, find the values of
`x^2 + (1)/x^2`
Solution
`x^2 + (1)/x^2`
`(x^2 + (1)/x^2) = (x + (1)/x)^2 -2` ----(1)
we will first find the value of `x + (1)/x`
`x + (1)/x = (4 - sqrt(15)) + (1)/((4 - sqrt(15))`
= `((4 - sqrt(15))^2 + 1)/((4 - sqrt(15))`
= `(16 + 15 - 8sqrt(15) + 1)/((4 - sqrt(15))`
= `(8(4 - sqrt(15)))/((4 - sqrt(15))`
= 8
substituting the valuesin (1)
`(x^2 + (1)/x^2) = (x + (1)/x)^2 -2`
= 82 - 2
= 64 - 2
= 62
`(x^2 + (1)/x^2)` = 62
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`1/(sqrt 3 - sqrt 2)`
Rationalise the denominators of : `[sqrt6 - sqrt5]/[sqrt6 + sqrt5]`
Simplify :
` 22/[2sqrt3 + 1] + 17/[ 2sqrt3 - 1]`
If `sqrt2` = 1.4 and `sqrt3` = 1.7, find the value of `(2 - sqrt3)/(sqrt3).`
Simplify by rationalising the denominator in the following.
`(42)/(2sqrt(3) + 3sqrt(2)`
Simplify the following
`(4 + sqrt(5))/(4 - sqrt(5)) + (4 - sqrt(5))/(4 + sqrt(5)`
Simplify the following :
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2)`
In the following, find the value of a and b:
`(sqrt(3) - 1)/(sqrt(3) + 1) + (sqrt(3) + 1)/(sqrt(3) - 1) = "a" + "b"sqrt(3)`
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) - 1)`, find the values of
x2 - y2 + xy
Show that: `x^2 + 1/x^2 = 34,` if x = 3 + `2sqrt2`