Advertisements
Advertisements
Question
Rationalize the denominator.
`1/(sqrt 3 - sqrt 2)`
Solution
`1/(sqrt 3 - sqrt 2)`
`= 1/(sqrt 3 - sqrt 2) xx ((sqrt3+ sqrt 2))/((sqrt3+ sqrt2))`
`= ((sqrt 3 + sqrt 2))/((sqrt 3)^2 - (sqrt 2)^2) ...[(a+b)(a-b) = a^2 - b^2]`
`= ((sqrt 3 + sqrt 2))/(3 - 2)`
`= sqrt 3 + sqrt 2`
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`1/(sqrt 7 + sqrt 2)`
Rationalize the denominator.
`3/(2 sqrt 5 - 3 sqrt 2)`
Simplify by rationalising the denominator in the following.
`(42)/(2sqrt(3) + 3sqrt(2)`
Simplify by rationalising the denominator in the following.
`(sqrt(3) + 1)/(sqrt(3) - 1)`
Simplify by rationalising the denominator in the following.
`(sqrt(15) + 3)/(sqrt(15) - 3)`
Simplify by rationalising the denominator in the following.
`(sqrt(12) + sqrt(18))/(sqrt(75) - sqrt(50)`
Simplify the following
`(3)/(5 - sqrt(3)) + (2)/(5 + sqrt(3)`
Simplify the following :
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2)`
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) + 1)`, find the values of
x3 + y3
If x = `(1)/((3 - 2sqrt(2))` and y = `(1)/((3 + 2sqrt(2))`, find the values of
x2 + y2