Advertisements
Advertisements
Question
Simplify by rationalising the denominator in the following.
`(sqrt(12) + sqrt(18))/(sqrt(75) - sqrt(50)`
Solution
`(sqrt(12) + sqrt(18))/(sqrt(75) - sqrt(50)`
= `(sqrt(12) + sqrt(18))/(sqrt(75) - sqrt(50)) xx (sqrt(75) + sqrt(50))/(sqrt(75) + sqrt(50)`
= `((2sqrt(3) + 3sqrt(2))(5sqrt(3) + 5sqrt(2)))/((sqrt(75))^2 - (sqrt(50))^2`
= `(30 + 10sqrt(6) + 15sqrt(6) + 30)/(75 - 50)`
= `(60 + 25sqrt(6))/(25)`
= `(12 + 5sqrt(6))/(5)`
APPEARS IN
RELATED QUESTIONS
Rationalise the denominators of : `[ 2√5 + 3√2 ]/[ 2√5 - 3√2 ]`
Rationalise the denominator of `1/[ √3 - √2 + 1]`
Simplify by rationalising the denominator in the following.
`(1)/(sqrt(3) + sqrt(2))`
In the following, find the values of a and b:
`(sqrt(11) - sqrt(7))/(sqrt(11) + sqrt(7)) = "a" - "b"sqrt(77)`
If x = `(4 - sqrt(15))`, find the values of
`x^2 + (1)/x^2`
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) + 1)`, find the values of
x2 + y2
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) - 1)`, find the values of
x2 - y2 + xy
Evaluate, correct to one place of decimal, the expression `5/(sqrt20 - sqrt10)`, if `sqrt5` = 2.2 and `sqrt10` = 3.2.
Show that: `x^2 + 1/x^2 = 34,` if x = 3 + `2sqrt2`
Show that: `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + (2 sqrt3)/(sqrt3 - sqrt2) = 11`