Advertisements
Advertisements
Question
Simplify the following
`(3)/(5 - sqrt(3)) + (2)/(5 + sqrt(3)`
Solution
`(3)/(5 - sqrt(3)) + (2)/(5 + sqrt(3)`
= `(3(5 + sqrt(3)) + 2(5 - sqrt(3)))/((5 - sqrt(3))(5 + sqrt(3))`
= `(15 + 3sqrt(3) + 10 - 2sqrt(3))/((5)^2 - (sqrt(3))^2`
= `(25 + sqrt(3))/(25 - 3)`
= `(25 + sqrt(3))/(22)`
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`4/(7+ 4 sqrt3)`
Rationalise the denominators of : `3/[ sqrt5 + sqrt2 ]`
Rationalise the denominators of : `[ √3 + 1 ]/[ √3 - 1 ]`
Simplify : `sqrt18/[ 5sqrt18 + 3sqrt72 - 2sqrt162]`
Simplify by rationalising the denominator in the following.
`(3sqrt(2))/sqrt(5)`
Simplify by rationalising the denominator in the following.
`(sqrt(5) - sqrt(7))/sqrt(3)`
If x = `(7 + 4sqrt(3))`, find the values of
`x^3 + (1)/x^3`
If x = `(4 - sqrt(15))`, find the values of
`(1)/x`
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) + 1)`, find the values of
x2 + y2
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) + 1)`, find the values of
x3 + y3