Advertisements
Advertisements
Question
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) + 1)`, find the values of
x2 + y2
Solution
x2 + y2
x2 + y2 = (x + y)2 - 2xy ----(1)
∴ (x + y) = `((sqrt(3) + 1))/((sqrt(3) - 1)) + ((sqrt(3) - 1))/((sqrt(3) - 1)`
= `((sqrt(3) + 1)^2 + (sqrt(3) - 1)^2)/(3 - 1)`
= `(3 + 1 + 2sqrt(3) + 3 + 1 - 2sqrt(3))/(2)`
= `(8)/(2)`
= 4
and xy = `((sqrt(3) + 1))/((sqrt(3) - 1)) xx ((sqrt(3) - 1))/((sqrt(3) + 1)`
= 1
substituting in (1), we get
x2 + y2
= (x + y)2 - 2xy
= 16 - 2
= 14
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`3/(2 sqrt 5 - 3 sqrt 2)`
Rationalize the denominator.
`1/(3 sqrt 5 + 2 sqrt 2)`
Rationalise the denominators of : `[ sqrt3 - sqrt2 ]/[ sqrt3 + sqrt2 ]`
Rationalise the denominators of : `[sqrt6 - sqrt5]/[sqrt6 + sqrt5]`
Simplify by rationalising the denominator in the following.
`(1)/(5 + sqrt(2))`
Simplify by rationalising the denominator in the following.
`(sqrt(3) + 1)/(sqrt(3) - 1)`
Simplify by rationalising the denominator in the following.
`(5sqrt(3) - sqrt(15))/(5sqrt(3) + sqrt(15)`
If x = `(4 - sqrt(15))`, find the values of
`(1)/x`
If x = `((2 + sqrt(5)))/((2 - sqrt(5))` and y = `((2 - sqrt(5)))/((2 + sqrt(5))`, show that (x2 - y2) = `144sqrt(5)`.
Show that: `x^2 + 1/x^2 = 34,` if x = 3 + `2sqrt2`