Advertisements
Advertisements
Question
Show that: `x^2 + 1/x^2 = 34,` if x = 3 + `2sqrt2`
Solution
Given: x = 3 + `2sqrt2`
`1/x = 1/(3 + 2sqrt2) xx (3 - 2sqrt2)/(3 - 2sqrt2)`
`1/x = (3 - 2sqrt2)/((3)^2 - (2sqrt2)^2)`
`1/x = (3 - 2sqrt2)/(9 - 8)`
`1/x = 3 - 2sqrt2`
Now, `x + 1/x = 3 + cancel(2sqrt2) + 3 - cancel(2sqrt2)`
`x + 1/x = 6`
Squaring on both sides
`(x + 1/x)^2 = (6)^2`
`=> x^2 + 1/x^2 + 2 xx cancel(x) xx 1/cancel(x) = 36`
`=x^2 + 1/x^2 = 36 - 2`
`= x^2 + 1/x^2 = 34`
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`(sqrt 5 - sqrt 3)/(sqrt 5 + sqrt 3)`
Rationalize the denominator.
`12/(4sqrt3 - sqrt 2)`
Rationalise the denominators of : `[ √3 + 1 ]/[ √3 - 1 ]`
Simplify by rationalising the denominator in the following.
`(5)/(sqrt(7) - sqrt(2))`
Simplify by rationalising the denominator in the following.
`(sqrt(15) + 3)/(sqrt(15) - 3)`
If x = `(4 - sqrt(15))`, find the values of
`x + (1)/x`
If x = `((2 + sqrt(5)))/((2 - sqrt(5))` and y = `((2 - sqrt(5)))/((2 + sqrt(5))`, show that (x2 - y2) = `144sqrt(5)`.
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) + 1)`, find the values of
x2 + y2
Simplify:
`(sqrt(x^2 + y^2) - y)/(x - sqrt(x^2 - y^2)) ÷ (sqrt(x^2 - y^2) + x)/(sqrt(x^2 + y^2) + y)`
Show that: `x^3 + 1/x^3 = 52`, if x = 2 + `sqrt3`