Advertisements
Advertisements
प्रश्न
Show that: `x^2 + 1/x^2 = 34,` if x = 3 + `2sqrt2`
उत्तर
Given: x = 3 + `2sqrt2`
`1/x = 1/(3 + 2sqrt2) xx (3 - 2sqrt2)/(3 - 2sqrt2)`
`1/x = (3 - 2sqrt2)/((3)^2 - (2sqrt2)^2)`
`1/x = (3 - 2sqrt2)/(9 - 8)`
`1/x = 3 - 2sqrt2`
Now, `x + 1/x = 3 + cancel(2sqrt2) + 3 - cancel(2sqrt2)`
`x + 1/x = 6`
Squaring on both sides
`(x + 1/x)^2 = (6)^2`
`=> x^2 + 1/x^2 + 2 xx cancel(x) xx 1/cancel(x) = 36`
`=x^2 + 1/x^2 = 36 - 2`
`= x^2 + 1/x^2 = 34`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`12/(4sqrt3 - sqrt 2)`
Rationalise the denominators of : `[ √3 + 1 ]/[ √3 - 1 ]`
Simplify by rationalising the denominator in the following.
`(2sqrt(3) - sqrt(6))/(2sqrt(3) + sqrt(6)`
Simplify the following :
`sqrt(6)/(sqrt(2) + sqrt(3)) + (3sqrt(2))/(sqrt(6) + sqrt(3)) - (4sqrt(3))/(sqrt(6) + sqrt(2)`
In the following, find the values of a and b:
`(3 + sqrt(7))/(3 - sqrt(7)) = "a" + "b"sqrt(7)`
In the following, find the values of a and b:
`(7sqrt(3) - 5sqrt(2))/(4sqrt(3) + 3sqrt(2)) = "a" - "b"sqrt(6)`
If x = `(7 + 4sqrt(3))`, find the values of
`x^3 + (1)/x^3`
If x = `(4 - sqrt(15))`, find the values of
`(1)/x`
If x = `(4 - sqrt(15))`, find the values of
`x + (1)/x`
If x = `(1)/((3 - 2sqrt(2))` and y = `(1)/((3 + 2sqrt(2))`, find the values of
x2 + y2