Advertisements
Advertisements
प्रश्न
Show that: `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + (2 sqrt3)/(sqrt3 - sqrt2) = 11`
उत्तर
`(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + (2 sqrt3)/(sqrt3 - sqrt2)`
`=> (3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) xx (3sqrt2 - 2sqrt3)/(3sqrt2 - 2sqrt3) + (2sqrt3)/(sqrt3 - sqrt2) xx (sqrt3 + sqrt2)/(sqrt3 + sqrt2)`
`=> ((3sqrt2 - 2sqrt3)^2)/((3sqrt2)^2 - (2sqrt3)^2) + (2sqrt3 (sqrt3 + sqrt2))/((sqrt3)^2 - (sqrt2)^2)`
`=> ((3sqrt2)^2 + (2sqrt3)^2 - 2 xx 3sqrt2 xx 2sqrt3)/((9 xx 2) - (4 xx 3)) + (6 + 2sqrt6)/(3 - 2)`
`=> (18 + 12 - 12sqrt6)/(18 - 12) + 6 + 2sqrt6`
`=> (30 - 12sqrt6)/6 + 6 + 2sqrt6`
`=> (cancel(6) (5 - 2sqrt6))/cancel(6) + 6 + 2sqrt6`
`=> 5 - cancel(2sqrt6) + 6 + cancel(2sqrt6)`
= 5 + 6
= 11
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`3/(2 sqrt 5 - 3 sqrt 2)`
Rationalise the denominators of : `(2sqrt3)/sqrt5`
Simplify by rationalising the denominator in the following.
`(3 - sqrt(3))/(2 + sqrt(2)`
Simplify by rationalising the denominator in the following.
`(sqrt(7) - sqrt(5))/(sqrt(7) + sqrt(5)`
Simplify by rationalising the denominator in the following.
`(2sqrt(6) - sqrt(5))/(3sqrt(5) - 2sqrt(6)`
Simplify the following
`(sqrt(7) - sqrt(3))/(sqrt(7) + sqrt(3)) - (sqrt(7) + sqrt(3))/(sqrt(7) - sqrt(3)`
In the following, find the values of a and b:
`(5 + 2sqrt(3))/(7 + 4sqrt(3)) = "a" + "b"sqrt(3)`
In the following, find the values of a and b:
`(7sqrt(3) - 5sqrt(2))/(4sqrt(3) + 3sqrt(2)) = "a" - "b"sqrt(6)`
In the following, find the values of a and b:
`(sqrt(2) + sqrt(3))/(3sqrt(2) - 2sqrt(3)) = "a" - "b"sqrt(6)`
If x = `(4 - sqrt(15))`, find the values of:
`(x + (1)/x)^2`