Advertisements
Advertisements
प्रश्न
Simplify by rationalising the denominator in the following.
`(2sqrt(6) - sqrt(5))/(3sqrt(5) - 2sqrt(6)`
उत्तर
`(2sqrt(6) - sqrt(5))/(3sqrt(5) - 2sqrt(6)`
= `(2sqrt(6) - sqrt(5))/(3sqrt(5) - 2sqrt(6)) xx (3sqrt(5) + 2sqrt(6))/(3sqrt(5) + 2sqrt(6)`
= `(6sqrt(30) + 24 - 15 - 2sqrt(30))/((3sqrt(5))^2 - (2sqrt(6))^2`
= `(6sqrt(30) + 9 - 2sqrt(30))/(45 - 24)`
= `(4sqrt(30) + 9)/(21)`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`1/sqrt5`
Rationalize the denominator.
`1/(sqrt 3 - sqrt 2)`
Rationalise the denominators of : `3/sqrt5`
Rationalise the denominators of : `[ 2 - √3 ]/[ 2 + √3 ]`
If `sqrt2` = 1.4 and `sqrt3` = 1.7, find the value of `(2 - sqrt3)/(sqrt3).`
Simplify by rationalising the denominator in the following.
`(1)/(sqrt(3) + sqrt(2))`
Simplify by rationalising the denominator in the following.
`(5 + sqrt(6))/(5 - sqrt(6)`
Simplify the following :
`(3sqrt(2))/(sqrt(6) - sqrt(3)) - (4sqrt(3))/(sqrt(6) - sqrt(2)) + (2sqrt(3))/(sqrt(6) + 2)`
If x = `(7 + 4sqrt(3))`, find the value of
`sqrt(x) + (1)/(sqrt(x)`
If x = `(4 - sqrt(15))`, find the values of
`(1)/x`