Advertisements
Advertisements
प्रश्न
Simplify by rationalising the denominator in the following.
`(7sqrt(3) - 5sqrt(2))/(sqrt(48) + sqrt(18)`
उत्तर
`(7sqrt(3) - 5sqrt(2))/(sqrt(48) + sqrt(18)`
= `(7sqrt(3) - 5sqrt(2))/(sqrt(48) + sqrt(18)) xx (sqrt(48) - sqrt(18))/(sqrt(48) - sqrt(18)`
= `(7sqrt(144) - 7sqrt(54) - 5sqrt(96) + 5sqrt(36))/((sqrt(48))^2 - (sqrt(18))^2`
= `(84 - 21sqrt(6) - 20sqrt(6) + 30)/(48 - 18)`
= `(144 - 41sqrt(6))/(30)`
APPEARS IN
संबंधित प्रश्न
Rationalise the denominators of : `3/sqrt5`
Rationalise the denominator of `1/[ √3 - √2 + 1]`
Simplify by rationalising the denominator in the following.
`(2)/(3 + sqrt(7)`
Simplify by rationalising the denominator in the following.
`(2sqrt(3) - sqrt(6))/(2sqrt(3) + sqrt(6)`
Simplify the following
`(sqrt(5) - 2)/(sqrt(5) + 2) - (sqrt(5) + 2)/(sqrt(5) - 2)`
Simplify the following :
`(3sqrt(2))/(sqrt(6) - sqrt(3)) - (4sqrt(3))/(sqrt(6) - sqrt(2)) + (2sqrt(3))/(sqrt(6) + 2)`
In the following, find the values of a and b:
`(3 + sqrt(7))/(3 - sqrt(7)) = "a" + "b"sqrt(7)`
In the following, find the value of a and b:
`(sqrt(3) - 1)/(sqrt(3) + 1) + (sqrt(3) + 1)/(sqrt(3) - 1) = "a" + "b"sqrt(3)`
If x = `(1)/((3 - 2sqrt(2))` and y = `(1)/((3 + 2sqrt(2))`, find the values of
x3 + y3
Draw a line segment of length `sqrt5` cm.