Advertisements
Advertisements
प्रश्न
In the following, find the value of a and b:
`(sqrt(3) - 1)/(sqrt(3) + 1) + (sqrt(3) + 1)/(sqrt(3) - 1) = "a" + "b"sqrt(3)`
उत्तर
`(sqrt(3) - 1)/(sqrt(3) + 1) + (sqrt(3) + 1)/(sqrt(3) - 1)`
= `(sqrt(3) - 1)/(sqrt(3) + 1) xx (sqrt(3) - 1)/(sqrt(3) - 1) + (sqrt(3) + 1)/(sqrt(3) - 1) + (sqrt(3) + 1)/(sqrt(3) + 1)`
= `(sqrt(3) - 1)^2/((sqrt(3))^2 - 1) + (sqrt(3) + 1)^2/((sqrt(3))^2 - 1)`
= `((sqrt(3))^2 - 2 xx sqrt(3) xx 1 + 1^2)/(3 - 1) + ((sqrt(3))^2 + 2 xx sqrt(3) xx 1 + 1^2)/(3 - 1)`
= `(3 - 2sqrt(3) + 1)/(2) + (3 + 2sqrt(3) + 1)/(2)`
= `(4 - 2sqrt(3))/(2) + (4 + 2sqrt(3))/(2)`
= `(2(2 - sqrt(3)))/(2) + (2(2 + sqrt(3)))/(2)`
= `2 - sqrt(3) + 2 + sqrt(3)`
= 4 + 0
Hence, a = 4 and b = 0
APPEARS IN
संबंधित प्रश्न
Simplify by rationalising the denominator in the following.
`(5)/(sqrt(7) - sqrt(2))`
Simplify by rationalising the denominator in the following.
`(sqrt(12) + sqrt(18))/(sqrt(75) - sqrt(50)`
If `(sqrt(2.5) - sqrt(0.75))/(sqrt(2.5) + sqrt(0.75)) = "p" + "q"sqrt(30)`, find the values of p and q.
In the following, find the values of a and b:
`(5 + 2sqrt(3))/(7 + 4sqrt(3)) = "a" + "b"sqrt(3)`
If x = `(4 - sqrt(15))`, find the values of:
`(x + (1)/x)^2`
If x = `((2 + sqrt(5)))/((2 - sqrt(5))` and y = `((2 - sqrt(5)))/((2 + sqrt(5))`, show that (x2 - y2) = `144sqrt(5)`.
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) - 1)`, find the values of
x2 - y2 + xy
Simplify:
`(sqrt(x^2 + y^2) - y)/(x - sqrt(x^2 - y^2)) ÷ (sqrt(x^2 - y^2) + x)/(sqrt(x^2 + y^2) + y)`
Draw a line segment of length `sqrt8` cm.
Using the following figure, show that BD = `sqrtx`.