Advertisements
Advertisements
प्रश्न
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) - 1)`, find the values of
x2 - y2 + xy
उत्तर
x2 - y2 + xy
x2 - y2 + xy = (x + y) (x - y) + xy ----(1)
∴ (x + y) = `((sqrt(3) + 1))/((sqrt(3) - 1)) + ((sqrt(3) - 1))/((sqrt(3) + 1)`
= `((sqrt(3) + 1)^2 + (sqrt(3) - 1)^2)/(3 - 1)`
= `(3 + 1 + 2sqrt(3) + 3 + 1 - 2sqrt(3))/(2)`
= `(8)/(2)`
= 4
(x - y) = `((sqrt(3) + 1))/((sqrt(3) - 1)) xx ((sqrt(3) - 1))/((sqrt(3) + 1)`
= `((sqrt(3) + 1)^2 - (sqrt(3) - 1)^2)/(3 - 1)`
= `(3 + 1 + 2sqrt(3) - 3 - 1 + 2sqrt(3))/(2)`
= `2sqrt(3)`
and xy = `((sqrt(3) + 1))/((sqrt(3) - 1)) xx ((sqrt(3) - 1))/((sqrt(3) + 1)`
= `(3 - 1)/(3 - 1)`
= 1
substitutingin (1), we get
x2 - y2 + xy
= (x+ y) (x - y) + xy
= `4 xx 2sqrt(3) + 1`
= `8sqrt(3) + 1`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`(sqrt 5 - sqrt 3)/(sqrt 5 + sqrt 3)`
Simplify :
` 22/[2sqrt3 + 1] + 17/[ 2sqrt3 - 1]`
Simplify by rationalising the denominator in the following.
`(4 + sqrt(8))/(4 - sqrt(8)`
Simplify by rationalising the denominator in the following.
`(sqrt(7) - sqrt(5))/(sqrt(7) + sqrt(5)`
Simplify by rationalising the denominator in the following.
`(sqrt(12) + sqrt(18))/(sqrt(75) - sqrt(50)`
In the following, find the values of a and b:
`(7sqrt(3) - 5sqrt(2))/(4sqrt(3) + 3sqrt(2)) = "a" - "b"sqrt(6)`
If x = `(7 + 4sqrt(3))`, find the value of
`sqrt(x) + (1)/(sqrt(x)`
Evaluate, correct to one place of decimal, the expression `5/(sqrt20 - sqrt10)`, if `sqrt5` = 2.2 and `sqrt10` = 3.2.
Show that: `(4 - sqrt5)/(4 + sqrt5) + 2/(5 + sqrt3) + (4 + sqrt5)/(4 - sqrt5) + 2/(5 - sqrt3) = 52/11`
Show that: `x^3 + 1/x^3 = 52`, if x = 2 + `sqrt3`