Advertisements
Advertisements
प्रश्न
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) + 1)`, find the values of
x3 + y3
उत्तर
x3 + y3
x3 + y3 = (x + y)3 - 3xy(x + y) ----(1)
∴ (x + y) = `((sqrt(3) + 1))/((sqrt(3) - 1)) + ((sqrt(3) - 1))/((sqrt(3) + 1)`
= `((sqrt(3) + 1)^2 + (sqrt(3) - 1)^2)/(3 - 1)`
= `(3 + 1 + 2sqrt(3) + 3 + 1 - 2sqrt(3))/(2)`
= `(8)/(2)`
= 4
and xy = `((sqrt(3) + 1))/((sqrt(3) - 1)) xx ((sqrt(3) - 1))/((sqrt(3) + 1)`
= `(3 - 1)/(3 - 1)`
= 1
substitutingin (1), we get
x3 + y3
= (x + y)3 - 3xy(x + y)
= 64 - 3 x 4
= 64 - 12
= 52
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`1/(sqrt 3 - sqrt 2)`
Rationalise the denominators of : `[ 2√5 + 3√2 ]/[ 2√5 - 3√2 ]`
Simplify:
`sqrt2/[sqrt6 - sqrt2] - sqrt3/[sqrt6 + sqrt2]`
Simplify : `sqrt18/[ 5sqrt18 + 3sqrt72 - 2sqrt162]`
Simplify by rationalising the denominator in the following.
`(1)/(sqrt(3) + sqrt(2))`
Simplify by rationalising the denominator in the following.
`(5sqrt(3) - sqrt(15))/(5sqrt(3) + sqrt(15)`
Simplify the following
`(sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3)) + (sqrt(5) - sqrt(3))/(sqrt(5) + sqrt(3)`
Simplify the following :
`(6)/(2sqrt(3) - sqrt(6)) + sqrt(6)/(sqrt(3) + sqrt(2)) - (4sqrt(3))/(sqrt(6) - sqrt(2)`
Simplify the following :
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2)`
In the following, find the values of a and b:
`(1)/(sqrt(5) - sqrt(3)) = "a"sqrt(5) - "b"sqrt(3)`