Advertisements
Advertisements
प्रश्न
Rationalize the denominator.
`1/(sqrt 3 - sqrt 2)`
उत्तर
`1/(sqrt 3 - sqrt 2)`
`= 1/(sqrt 3 - sqrt 2) xx ((sqrt3+ sqrt 2))/((sqrt3+ sqrt2))`
`= ((sqrt 3 + sqrt 2))/((sqrt 3)^2 - (sqrt 2)^2) ...[(a+b)(a-b) = a^2 - b^2]`
`= ((sqrt 3 + sqrt 2))/(3 - 2)`
`= sqrt 3 + sqrt 2`
APPEARS IN
संबंधित प्रश्न
Rationalise the denominators of : `3/sqrt5`
If `sqrt2` = 1.4 and `sqrt3` = 1.7, find the value of `(2 - sqrt3)/(sqrt3).`
Simplify by rationalising the denominator in the following.
`(42)/(2sqrt(3) + 3sqrt(2)`
Simplify by rationalising the denominator in the following.
`(2sqrt(3) - sqrt(6))/(2sqrt(3) + sqrt(6)`
Simplify by rationalising the denominator in the following.
`(7sqrt(3) - 5sqrt(2))/(sqrt(48) + sqrt(18)`
Simplify the following
`(3)/(5 - sqrt(3)) + (2)/(5 + sqrt(3)`
Simplify the following
`(4 + sqrt(5))/(4 - sqrt(5)) + (4 - sqrt(5))/(4 + sqrt(5)`
In the following, find the values of a and b:
`(1)/(sqrt(5) - sqrt(3)) = "a"sqrt(5) - "b"sqrt(3)`
In the following, find the values of a and b:
`(sqrt(3) - 2)/(sqrt(3) + 2) = "a"sqrt(3) + "b"`
If x = `((2 + sqrt(5)))/((2 - sqrt(5))` and y = `((2 - sqrt(5)))/((2 + sqrt(5))`, show that (x2 - y2) = `144sqrt(5)`.