Advertisements
Advertisements
प्रश्न
If x = `((2 + sqrt(5)))/((2 - sqrt(5))` and y = `((2 - sqrt(5)))/((2 + sqrt(5))`, show that (x2 - y2) = `144sqrt(5)`.
उत्तर
x = `((2 + sqrt(5)))/((2 - sqrt(5))`
= `((2 + sqrt(5)))/((2 - sqrt(5))) xx ((2 + sqrt(5)))/((2 + sqrt(5))`
= `(2 + sqrt(5))^2/(4 - 5)`
= `-(4 + 5 + 4sqrt(5))`
= `-9 -4sqrt(5)`
y = `((2 - sqrt(5)))/((2 + sqrt(5))`
= `((2 - sqrt(5)))/((2 + sqrt(5))) xx ((2 - sqrt(5)))/((2 - sqrt(5))`
= `(2 - sqrt(5))^2/(4 - 5)`
= `-(4 + 5 -4sqrt(5))`
= `-9 + 4sqrt(5)`
∴ x2 - y2 = (x + y) (x - y)
= `(-9 - 4sqrt(5) - 9 + 4sqrt(5))(-9 -4sqrt(5) + 9 - 4sqrt(5))`
= `(-18)(-8sqrt(5))`
= `144sqrt(5)`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`1/sqrt5`
Rationalise the denominators of : `3/sqrt5`
Rationalise the denominators of : `[ sqrt3 - sqrt2 ]/[ sqrt3 + sqrt2 ]`
Simplify the following
`(sqrt(5) - 2)/(sqrt(5) + 2) - (sqrt(5) + 2)/(sqrt(5) - 2)`
Simplify the following
`(sqrt(7) - sqrt(3))/(sqrt(7) + sqrt(3)) - (sqrt(7) + sqrt(3))/(sqrt(7) - sqrt(3)`
In the following, find the values of a and b:
`(sqrt(3) - 2)/(sqrt(3) + 2) = "a"sqrt(3) + "b"`
If x = `(4 - sqrt(15))`, find the values of
`x^2 + (1)/x^2`
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) - 1)`, find the values of
x2 - y2 + xy
Simplify:
`(sqrt(x^2 + y^2) - y)/(x - sqrt(x^2 - y^2)) ÷ (sqrt(x^2 - y^2) + x)/(sqrt(x^2 + y^2) + y)`
Show that Negative of an irrational number is irrational.