Advertisements
Advertisements
प्रश्न
Rationalise the denominators of : `[ sqrt3 - sqrt2 ]/[ sqrt3 + sqrt2 ]`
उत्तर
`[ sqrt3 - sqrt2 ]/[ sqrt3 + sqrt2 ] xx [ sqrt3 - sqrt2 ]/[ sqrt3 - sqrt2 ]`
= ` (sqrt3 - sqrt2 )^2/[(sqrt3)^2 - (sqrt2)^2]`
= `[ 3 + 2 - 2sqrt6 ]/[ 3 - 2 ]`
= 5 - 2√6
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`1/(sqrt 3 - sqrt 2)`
Rationalise the denominators of : `(2sqrt3)/sqrt5`
Rationalise the denominator of `1/[ √3 - √2 + 1]`
Simplify by rationalising the denominator in the following.
`(3 - sqrt(3))/(2 + sqrt(2)`
In the following, find the values of a and b.
`(sqrt(3) - 1)/(sqrt(3) + 1) = "a" + "b"sqrt(3)`
In the following, find the values of a and b:
`(5 + 2sqrt(3))/(7 + 4sqrt(3)) = "a" + "b"sqrt(3)`
In the following, find the values of a and b:
`(sqrt(3) - 2)/(sqrt(3) + 2) = "a"sqrt(3) + "b"`
If x = `(7 + 4sqrt(3))`, find the value of
`sqrt(x) + (1)/(sqrt(x)`
Draw a line segment of length `sqrt8` cm.
Show that: `x^3 + 1/x^3 = 52`, if x = 2 + `sqrt3`