Advertisements
Advertisements
प्रश्न
Rationalise the denominators of : `[sqrt6 - sqrt5]/[sqrt6 + sqrt5]`
उत्तर
`[sqrt6 - sqrt5]/[sqrt6 + sqrt5] xx [sqrt6 - sqrt5]/[sqrt6 - sqrt5]`
= `[ 6 + 5 - 2√30 ]/[ (√6)^2 - (√5)^2]`
= `[ 11 - 2√30 ]/[ 6 - 5 ]`
= 11 - 2√30
APPEARS IN
संबंधित प्रश्न
Rationalise the denominators of : `3/sqrt5`
Rationalise the denominators of : `[ √3 + 1 ]/[ √3 - 1 ]`
Simplify by rationalising the denominator in the following.
`(42)/(2sqrt(3) + 3sqrt(2)`
Simplify by rationalising the denominator in the following.
`(sqrt(15) + 3)/(sqrt(15) - 3)`
Simplify by rationalising the denominator in the following.
`(sqrt(7) - sqrt(5))/(sqrt(7) + sqrt(5)`
Simplify by rationalising the denominator in the following.
`(5sqrt(3) - sqrt(15))/(5sqrt(3) + sqrt(15)`
Simplify the following
`(3)/(5 - sqrt(3)) + (2)/(5 + sqrt(3)`
If x = `(7 + 4sqrt(3))`, find the value of
`x^2 + (1)/x^2`
If x = `(4 - sqrt(15))`, find the values of
`x + (1)/x`
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) - 1)`, find the values of
x2 - y2 + xy