Advertisements
Advertisements
प्रश्न
Simplify the following
`(3)/(5 - sqrt(3)) + (2)/(5 + sqrt(3)`
उत्तर
`(3)/(5 - sqrt(3)) + (2)/(5 + sqrt(3)`
= `(3(5 + sqrt(3)) + 2(5 - sqrt(3)))/((5 - sqrt(3))(5 + sqrt(3))`
= `(15 + 3sqrt(3) + 10 - 2sqrt(3))/((5)^2 - (sqrt(3))^2`
= `(25 + sqrt(3))/(25 - 3)`
= `(25 + sqrt(3))/(22)`
APPEARS IN
संबंधित प्रश्न
If `sqrt2` = 1.4 and `sqrt3` = 1.7, find the value of `(2 - sqrt3)/(sqrt3).`
Simplify by rationalising the denominator in the following.
`(3sqrt(2))/sqrt(5)`
Simplify by rationalising the denominator in the following.
`(5)/(sqrt(7) - sqrt(2))`
Simplify by rationalising the denominator in the following.
`(sqrt(15) + 3)/(sqrt(15) - 3)`
Simplify by rationalising the denominator in the following.
`(5sqrt(3) - sqrt(15))/(5sqrt(3) + sqrt(15)`
Simplify the following
`(4 + sqrt(5))/(4 - sqrt(5)) + (4 - sqrt(5))/(4 + sqrt(5)`
Simplify the following
`(sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3)) + (sqrt(5) - sqrt(3))/(sqrt(5) + sqrt(3)`
Evaluate, correct to one place of decimal, the expression `5/(sqrt20 - sqrt10)`, if `sqrt5` = 2.2 and `sqrt10` = 3.2.
Draw a line segment of length `sqrt3` cm.
Using the following figure, show that BD = `sqrtx`.