Advertisements
Advertisements
प्रश्न
Simplify by rationalising the denominator in the following.
`(sqrt(12) + sqrt(18))/(sqrt(75) - sqrt(50)`
उत्तर
`(sqrt(12) + sqrt(18))/(sqrt(75) - sqrt(50)`
= `(sqrt(12) + sqrt(18))/(sqrt(75) - sqrt(50)) xx (sqrt(75) + sqrt(50))/(sqrt(75) + sqrt(50)`
= `((2sqrt(3) + 3sqrt(2))(5sqrt(3) + 5sqrt(2)))/((sqrt(75))^2 - (sqrt(50))^2`
= `(30 + 10sqrt(6) + 15sqrt(6) + 30)/(75 - 50)`
= `(60 + 25sqrt(6))/(25)`
= `(12 + 5sqrt(6))/(5)`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`3/(2 sqrt 5 - 3 sqrt 2)`
Rationalize the denominator.
`12/(4sqrt3 - sqrt 2)`
Simplify by rationalising the denominator in the following.
`(2)/(3 + sqrt(7)`
Simplify by rationalising the denominator in the following.
`(sqrt(7) - sqrt(5))/(sqrt(7) + sqrt(5)`
Simplify the following
`(sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3)) + (sqrt(5) - sqrt(3))/(sqrt(5) + sqrt(3)`
In the following, find the values of a and b:
`(7sqrt(3) - 5sqrt(2))/(4sqrt(3) + 3sqrt(2)) = "a" - "b"sqrt(6)`
If x = `(7 + 4sqrt(3))`, find the value of
`x^2 + (1)/x^2`
If x = `(4 - sqrt(15))`, find the values of
`(1)/x`
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) + 1)`, find the values of
x2 + y2
Draw a line segment of length `sqrt8` cm.