Advertisements
Advertisements
प्रश्न
Simplify by rationalising the denominator in the following.
`(sqrt(12) + sqrt(18))/(sqrt(75) - sqrt(50)`
उत्तर
`(sqrt(12) + sqrt(18))/(sqrt(75) - sqrt(50)`
= `(sqrt(12) + sqrt(18))/(sqrt(75) - sqrt(50)) xx (sqrt(75) + sqrt(50))/(sqrt(75) + sqrt(50)`
= `((2sqrt(3) + 3sqrt(2))(5sqrt(3) + 5sqrt(2)))/((sqrt(75))^2 - (sqrt(50))^2`
= `(30 + 10sqrt(6) + 15sqrt(6) + 30)/(75 - 50)`
= `(60 + 25sqrt(6))/(25)`
= `(12 + 5sqrt(6))/(5)`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`1/(sqrt 7 + sqrt 2)`
Rationalize the denominator.
`1/sqrt5`
Rationalise the denominators of : `(2sqrt3)/sqrt5`
Rationalise the denominators of : `1/(sqrt3 - sqrt2 )`
Rationalise the denominator of `1/[ √3 - √2 + 1]`
Simplify the following
`(sqrt(5) - 2)/(sqrt(5) + 2) - (sqrt(5) + 2)/(sqrt(5) - 2)`
If x = `(7 + 4sqrt(3))`, find the values of
`x^3 + (1)/x^3`
Evaluate, correct to one place of decimal, the expression `5/(sqrt20 - sqrt10)`, if `sqrt5` = 2.2 and `sqrt10` = 3.2.
Show that Negative of an irrational number is irrational.
Draw a line segment of length `sqrt3` cm.