Advertisements
Advertisements
प्रश्न
Simplify by rationalising the denominator in the following.
`(7sqrt(3) - 5sqrt(2))/(sqrt(48) + sqrt(18)`
उत्तर
`(7sqrt(3) - 5sqrt(2))/(sqrt(48) + sqrt(18)`
= `(7sqrt(3) - 5sqrt(2))/(sqrt(48) + sqrt(18)) xx (sqrt(48) - sqrt(18))/(sqrt(48) - sqrt(18)`
= `(7sqrt(144) - 7sqrt(54) - 5sqrt(96) + 5sqrt(36))/((sqrt(48))^2 - (sqrt(18))^2`
= `(84 - 21sqrt(6) - 20sqrt(6) + 30)/(48 - 18)`
= `(144 - 41sqrt(6))/(30)`
APPEARS IN
संबंधित प्रश्न
Rationalise the denominators of : `3/[ sqrt5 + sqrt2 ]`
Rationalise the denominators of : `[ sqrt3 - sqrt2 ]/[ sqrt3 + sqrt2 ]`
Simplify :
` 22/[2sqrt3 + 1] + 17/[ 2sqrt3 - 1]`
In the following, find the values of a and b.
`(sqrt(3) - 1)/(sqrt(3) + 1) = "a" + "b"sqrt(3)`
In the following, find the values of a and b:
`(5 + 2sqrt(3))/(7 + 4sqrt(3)) = "a" + "b"sqrt(3)`
In the following, find the value of a and b:
`(sqrt(3) - 1)/(sqrt(3) + 1) + (sqrt(3) + 1)/(sqrt(3) - 1) = "a" + "b"sqrt(3)`
If x = `(4 - sqrt(15))`, find the values of
`x + (1)/x`
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) - 1)`, find the values of
x2 - y2 + xy
If x = `(1)/((3 - 2sqrt(2))` and y = `(1)/((3 + 2sqrt(2))`, find the values of
x3 + y3
Show that Negative of an irrational number is irrational.