Advertisements
Advertisements
प्रश्न
In the following, find the value of a and b:
`(sqrt(3) - 1)/(sqrt(3) + 1) + (sqrt(3) + 1)/(sqrt(3) - 1) = "a" + "b"sqrt(3)`
उत्तर
`(sqrt(3) - 1)/(sqrt(3) + 1) + (sqrt(3) + 1)/(sqrt(3) - 1)`
= `(sqrt(3) - 1)/(sqrt(3) + 1) xx (sqrt(3) - 1)/(sqrt(3) - 1) + (sqrt(3) + 1)/(sqrt(3) - 1) + (sqrt(3) + 1)/(sqrt(3) + 1)`
= `(sqrt(3) - 1)^2/((sqrt(3))^2 - 1) + (sqrt(3) + 1)^2/((sqrt(3))^2 - 1)`
= `((sqrt(3))^2 - 2 xx sqrt(3) xx 1 + 1^2)/(3 - 1) + ((sqrt(3))^2 + 2 xx sqrt(3) xx 1 + 1^2)/(3 - 1)`
= `(3 - 2sqrt(3) + 1)/(2) + (3 + 2sqrt(3) + 1)/(2)`
= `(4 - 2sqrt(3))/(2) + (4 + 2sqrt(3))/(2)`
= `(2(2 - sqrt(3)))/(2) + (2(2 + sqrt(3)))/(2)`
= `2 - sqrt(3) + 2 + sqrt(3)`
= 4 + 0
Hence, a = 4 and b = 0
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`3/(2 sqrt 5 - 3 sqrt 2)`
Rationalise the denominators of : `3/sqrt5`
Rationalise the denominators of : `1/(sqrt3 - sqrt2 )`
Simplify by rationalising the denominator in the following.
`(sqrt(7) - sqrt(5))/(sqrt(7) + sqrt(5)`
Simplify by rationalising the denominator in the following.
`(sqrt(12) + sqrt(18))/(sqrt(75) - sqrt(50)`
In the following, find the values of a and b:
`(sqrt(2) + sqrt(3))/(3sqrt(2) - 2sqrt(3)) = "a" - "b"sqrt(6)`
If x = `(4 - sqrt(15))`, find the values of
`x^2 + (1)/x^2`
If x = `(4 - sqrt(15))`, find the values of:
`(x + (1)/x)^2`
If x = `(1)/((3 - 2sqrt(2))` and y = `(1)/((3 + 2sqrt(2))`, find the values of
x2 + y2
Show that: `x^2 + 1/x^2 = 34,` if x = 3 + `2sqrt2`