Advertisements
Advertisements
प्रश्न
In the following, find the values of a and b:
`(sqrt(2) + sqrt(3))/(3sqrt(2) - 2sqrt(3)) = "a" - "b"sqrt(6)`
उत्तर
`(sqrt(2) + sqrt(3))/(3sqrt(2) - 2sqrt(3)`
= `(sqrt(2) + sqrt(3))/(3sqrt(2) - 2sqrt(3)) xx (3sqrt(2) + 2sqrt(3))/(3sqrt(2) + 2sqrt(3)`
= `((sqrt(2) + sqrt(3))(3sqrt(2) + 2sqrt(3)))/((3sqrt(2))^2 - (2sqrt(3))^2`
= `(sqrt(2)(3sqrt(2) + 2sqrt(3)) + sqrt(3)(3sqrt(2) + 2sqrt(3)))/((9 xx 2) - (4 xx 3))`
= `((3 xx 2 + 2sqrt(6)) + (3sqrt(6) + 2 xx 3))/(18 - 12)`
= `(6 + 2sqrt(6) + 3sqrt(6) + 6)/(6)`
= `(12 + 5sqrt(6))/(6)`
= `2 - (-5/6)sqrt(6)`
= `"a" - "b"sqrt(6)`
Hence, a = 2 and b = `-(5)/(6)`.
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`12/(4sqrt3 - sqrt 2)`
Rationalise the denominators of : `1/(sqrt3 - sqrt2 )`
Rationalise the denominators of : `3/[ sqrt5 + sqrt2 ]`
Rationalise the denominators of : `[sqrt6 - sqrt5]/[sqrt6 + sqrt5]`
Simplify :
` 22/[2sqrt3 + 1] + 17/[ 2sqrt3 - 1]`
Rationalise the denominator of `1/[ √3 - √2 + 1]`
Simplify by rationalising the denominator in the following.
`(1)/(sqrt(3) + sqrt(2))`
Simplify by rationalising the denominator in the following.
`(sqrt(15) + 3)/(sqrt(15) - 3)`
If x = `(7 + 4sqrt(3))`, find the values of
`x^3 + (1)/x^3`
Show that: `(4 - sqrt5)/(4 + sqrt5) + 2/(5 + sqrt3) + (4 + sqrt5)/(4 - sqrt5) + 2/(5 - sqrt3) = 52/11`