Advertisements
Advertisements
प्रश्न
In the following, find the values of a and b:
`(7sqrt(3) - 5sqrt(2))/(4sqrt(3) + 3sqrt(2)) = "a" - "b"sqrt(6)`
उत्तर
`(7sqrt(3) - 5sqrt(2))/(4sqrt(3) + 3sqrt(2)`
= `(7sqrt(3) - 5sqrt(2))/(4sqrt(3) + 3sqrt(2)) xx (4sqrt(3) - 3sqrt(2))/(4sqrt(3) - 3sqrt(2)`
= `(7sqrt(3)(4sqrt(3) - 3sqrt(2)) - 5sqrt(2)(4sqrt(3) - 3sqrt(2)))/((4sqrt(3))^2 - (3sqrt(2))^2`
= `(84 - 21sqrt(6) - 20sqrt(6) + 30)/(48 - 18)`
= `(110 - 41sqrt(6))/(30)`
= `(110)/(30) - (41sqrt(6))/(30)`
= `(11)/(3) - (41)/(30)sqrt(6)`
= `"a" - "b"sqrt(6)`
Hence, a = `(11)/(3)` and b = `(41)/(30)`.
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`1/sqrt5`
Rationalise the denominators of : `1/(sqrt3 - sqrt2 )`
Simplify by rationalising the denominator in the following.
`(5)/(sqrt(7) - sqrt(2))`
Simplify by rationalising the denominator in the following.
`(5 + sqrt(6))/(5 - sqrt(6)`
In the following, find the values of a and b.
`(sqrt(3) - 1)/(sqrt(3) + 1) = "a" + "b"sqrt(3)`
In the following, find the values of a and b:
`(sqrt(2) + sqrt(3))/(3sqrt(2) - 2sqrt(3)) = "a" - "b"sqrt(6)`
If x = `(4 - sqrt(15))`, find the values of
`x^2 + (1)/x^2`
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) + 1)`, find the values of
x3 + y3
Evaluate, correct to one place of decimal, the expression `5/(sqrt20 - sqrt10)`, if `sqrt5` = 2.2 and `sqrt10` = 3.2.
Using the following figure, show that BD = `sqrtx`.