Advertisements
Advertisements
प्रश्न
In the following, find the values of a and b:
`(sqrt(11) - sqrt(7))/(sqrt(11) + sqrt(7)) = "a" - "b"sqrt(77)`
उत्तर
`(sqrt(11) - sqrt(7))/(sqrt(11) + sqrt(7)`
= `(sqrt(11) - sqrt(7))/(sqrt(11) + sqrt(7)) xx (sqrt(11) - sqrt(7))/(sqrt(11) - sqrt(7)`
= `(sqrt(11) - sqrt(7))^2/((sqrt(11))^2 - (sqrt(7))^2`
= `((sqrt(11))^2 + (sqrt(7))^2 - 2 xx sqrt(11) xx sqrt(7))/(11 - 7)`
= `(11 + 7 - 2sqrt(77))/(4)`
= `(18 - 2sqrt(77))/(4)`
= `(18)/(4) - (2)/(4)sqrt(77)`
= `(9)/(2) - (1)/(2)sqrt(77)`
= `"a" - "b"sqrt(77)`
Hence, a = `(9)/(2)` and b = `(1)/(2)`.
APPEARS IN
संबंधित प्रश्न
Rationalise the denominators of : `[ 2√5 + 3√2 ]/[ 2√5 - 3√2 ]`
If `sqrt2` = 1.4 and `sqrt3` = 1.7, find the value of `(2 - sqrt3)/(sqrt3).`
Simplify : `sqrt18/[ 5sqrt18 + 3sqrt72 - 2sqrt162]`
Simplify by rationalising the denominator in the following.
`(3sqrt(2))/sqrt(5)`
Simplify by rationalising the denominator in the following.
`(1)/(5 + sqrt(2))`
Simplify by rationalising the denominator in the following.
`(5)/(sqrt(7) - sqrt(2))`
Simplify by rationalising the denominator in the following.
`(5 + sqrt(6))/(5 - sqrt(6)`
Simplify by rationalising the denominator in the following.
`(4 + sqrt(8))/(4 - sqrt(8)`
Simplify by rationalising the denominator in the following.
`(sqrt(15) + 3)/(sqrt(15) - 3)`
Simplify by rationalising the denominator in the following.
`(7sqrt(3) - 5sqrt(2))/(sqrt(48) + sqrt(18)`