Advertisements
Advertisements
प्रश्न
If `sqrt2` = 1.4 and `sqrt3` = 1.7, find the value of `(2 - sqrt3)/(sqrt3).`
उत्तर
`(2 - sqrt3)/(sqrt3)`
`= (2 - sqrt3)/(sqrt3) xx sqrt3/sqrt3`
`= ((2 - sqrt3) xx sqrt3)/(sqrt3 xx sqrt3)`
`= (2sqrt3 - 3)/3`
= `2/(√3) - (√3)/(√3)`
`= (2 xx 1.7 - 3)/3`
`= (3.4 - 3)/3`
`= 0.4/3`
= 0.1
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`1/(3 sqrt 5 + 2 sqrt 2)`
Rationalize the denominator.
`12/(4sqrt3 - sqrt 2)`
Rationalise the denominators of : `(2sqrt3)/sqrt5`
Rationalise the denominators of : `3/[ sqrt5 + sqrt2 ]`
Simplify :
` 22/[2sqrt3 + 1] + 17/[ 2sqrt3 - 1]`
Simplify by rationalising the denominator in the following.
`(1)/(5 + sqrt(2))`
If x = `(1)/((3 - 2sqrt(2))` and y = `(1)/((3 + 2sqrt(2))`, find the values of
x2 + y2
Draw a line segment of length `sqrt3` cm.
Show that: `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + (2 sqrt3)/(sqrt3 - sqrt2) = 11`
Using the following figure, show that BD = `sqrtx`.