Advertisements
Advertisements
प्रश्न
Using the following figure, show that BD = `sqrtx`.
उत्तर
AB = x and BC = 1
AC = AB + BC
= x + 1
diameter = x + 1
radius OA = OD = OC = OB = OC - BC
`= (x + 1)/2 - 1 = (x + 1 -2)/2 = (x - 1)/2`
Using pythagoras in ΔBOD
P2 + B2 = H2
`"P"^2 + ((x - 1)/2)^2 = ((x + 1)/2)^2`
`"P"^2 = ((x + 1)/2)^2 - ((x - 1)/2)^2`
= `((x + 1)^2 - (x - 1)^2)/4`
`= ((x^2 + 1 + 2x) - (x^2 + 1 - 2x))/4`
`= (x^2 + 1 + 2x - x^2 - 1 + 2x)/4`
`"P"^2 = (4x)/4`
P2 = x
P = `sqrtx`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`(sqrt 5 - sqrt 3)/(sqrt 5 + sqrt 3)`
Rationalise the denominators of : `[ √3 + 1 ]/[ √3 - 1 ]`
If `sqrt2` = 1.4 and `sqrt3` = 1.7, find the value of `(2 - sqrt3)/(sqrt3).`
Simplify by rationalising the denominator in the following.
`(5sqrt(3) - sqrt(15))/(5sqrt(3) + sqrt(15)`
Simplify the following :
`(6)/(2sqrt(3) - sqrt(6)) + sqrt(6)/(sqrt(3) + sqrt(2)) - (4sqrt(3))/(sqrt(6) - sqrt(2)`
Simplify the following :
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2)`
If x = `(4 - sqrt(15))`, find the values of
`(1)/x`
If x = `(4 - sqrt(15))`, find the values of
`x + (1)/x`
If x = `(1)/((3 - 2sqrt(2))` and y = `(1)/((3 + 2sqrt(2))`, find the values of
x2 + y2
Simplify:
`(sqrt(x^2 + y^2) - y)/(x - sqrt(x^2 - y^2)) ÷ (sqrt(x^2 - y^2) + x)/(sqrt(x^2 + y^2) + y)`