Advertisements
Advertisements
प्रश्न
Rationalise the denominators of : `3/[ sqrt5 + sqrt2 ]`
उत्तर
`3/[ sqrt5 + sqrt2 ] xx ((sqrt5 - sqrt2)/(sqrt5 - sqrt2))`
= `[3 (sqrt5 - sqrt2)]/[ (sqrt5)^2 - (sqrt2)^2 ]`
= `[3 (sqrt5 - sqrt2)]/[ 5 - 2]`
= `sqrt5 - sqrt2`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`1/sqrt5`
Rationalize the denominator.
`2/(3 sqrt 7)`
Rationalise the denominators of : `[ √3 + 1 ]/[ √3 - 1 ]`
Simplify by rationalising the denominator in the following.
`(2)/(3 + sqrt(7)`
Simplify the following
`(4 + sqrt(5))/(4 - sqrt(5)) + (4 - sqrt(5))/(4 + sqrt(5)`
Simplify the following
`(sqrt(7) - sqrt(3))/(sqrt(7) + sqrt(3)) - (sqrt(7) + sqrt(3))/(sqrt(7) - sqrt(3)`
Simplify the following
`(sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3)) + (sqrt(5) - sqrt(3))/(sqrt(5) + sqrt(3)`
Simplify the following :
`sqrt(6)/(sqrt(2) + sqrt(3)) + (3sqrt(2))/(sqrt(6) + sqrt(3)) - (4sqrt(3))/(sqrt(6) + sqrt(2)`
In the following, find the values of a and b:
`(7sqrt(3) - 5sqrt(2))/(4sqrt(3) + 3sqrt(2)) = "a" - "b"sqrt(6)`
Draw a line segment of length `sqrt3` cm.